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ABSTRACT 

We calculate the  asymptot ic  growth of tn(Mp(F) ,*)  and c,~(Mp(F),*), 

the  t race and ordinary *-codimensions of p × p matrices with involution. 

To do this we first calculate the  asymptot ic  growth of tn and then  show 

tha t  cn ~-- tn. 

(1) 

and 

I n t r o d u c t i o n  

Our main goal in this paper is to calculate the asymptotic behaviours of the 

multilinear *-codimensions of p × p matrices with or without trace, over a field of 

characteristic zero. The calculation will parallel the calculation of the asymptotic 

behaviour of the ordinary cocharacter of p × p matrices which was carried out in 

[12]: We use the theory of *-trace identities to calculate the asymptotic behaviour 

of the *-trace codimensions and then show that the *-trace codimensions and the 

• -codimensions are asymptotically equal. 

The first step in this program is easily obtained by combining two known 

results. It follows from the work of Procesi and Loday-Procesi [8, 9, 10] that  the 

multilinear trace codimensions of p z p matrices satisfy: 

t~ (Mp, transpose) = 
{dxiA E Par(2n), ht(A) <_ p, all rows of A are even} 

tn ( Mp, symplectic) = 
(2) E{d~IA e Par(2n), ht(A) < p, all columns of A are even}. 

The asymptotics of these two sums were calculated in [11]: 

tn(Mp, transpose)= u~l)(2n) = S(1)(2n) -- 

[ P-l] (1_1__~ p(p-1)I2 p2n. (1) V,.~m(p_,)/2 " I __F / '3 "k - '  P (1 l j ) ( 1 )  \ x / - ~ ]  + 

(2) 

tn(Mp, symplectic) = T~p)(2n)= T~)N(2n) 

~ ~ 2(N2+N+2)/4 . N N ( 7 N _ I ) / 4  . ~.Tj711.,(231 g " + 1) 

× ¢ i  "~ N(2N+1)/2 
\~nnJ (2N) 2n, where 2N = p. 
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Hence, the remainder of this paper will be devoted to proving that tn(Mp, *) 
c~, (Mp, .) for each of transpose and sympleetic involutions. The first two sections 

will be devoted to some general results pertaining to *-cocharacters. In section 

1 we compare the Sn- and Bn-eocharacters and in section 2 we compare the 

Bn- and GL(a) × GL(b)-cocharacters. In section 3 we specialize to the case of 

p × p matrices and draw various conclusions about the cocharacters from the 

existence of the conductor. Finally, in section 4 we prove our main result that  

cn ( Mp, *) ~- tn ( Mp, *) in all cases. 

In this paper we chose to use B~-cocharacters to study the relation between 

c~ and t~. It seems probable that one could obtain our main result more quickly 

by using Sn-cocharacters instead, since these characters are better understood. 

But we feel that  it is worthwhile to understand the Bn-cocharacter as well as 

the Sn-cocharacter and that our results on B~-cocharacters are of independent 

interest. 

1. Comparison of Bn- and Sn-cocharacters 

The group Bn can be defined most succinctly as the wreath product of Z/2Z with 

Sn. Here is a less succinct definition: Bn is the group of permutations of the 

set Xn = {xl, x~ , . . . ,  xn, x~} generated by the symmetric group Sn acting via 

a(xl) = Xo(~) and a(x*) = x* " and by the n transpositions which switch x~ and o(~), 
x*. If we think of * as an involution on Xn, then Bn is the set of permutations 

such that a(a*) = a(a)* for all a 6 Xn. 

We next let Vn be the space of all polynomials in Xn which are homogeneous 

of degree n and are multilinear in the sense that f (alXl ,alX~, . . . ,  (~nXn, anX*) 

= OqO~2"" "O~nf(Xl,X~,...,Xn,X*) for all a l , . . . , a s  in the field F. For conve- 

nience, we will write f(Xl, x~ , . . . ,  xn, x*) as f ( x l , . . . ,  xn). There is an obvious 

action of Bn on Vn given by a f ( x l , . . . ,  Xn) = f(a(Xl) , . . . ,  a(xn)). This action 

is important from the point of view of *-polynomial identities. Let A be an 

F-algebra with involutions and let In(A) = the *-polynomial identities of A con- 

tained in V=. Then In(A) is a Bn-submodule of Vn and so we may study Xs= (A), 

the nth multilinear ,-  cocharacters of A, defined to be the Bn-character of the 

quotient V,/In(A). By restriction, V,~/I~(A) is also a module for the symmetric 

group and we will denote its S~-character by Xs~ (A). 

If A is an algebra with both involution and trace, then we may extend the 

above definitions to include both operations: Vn will be the vector space of all 
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degree n, multilinear, mixed trace polynomials in X~. So, for example, IP2 will 

be spanned by V2 together with 

{Xl tr(x2), x~ tr(x2), xl tr(x~), x~ tr(x~), x2 t r ( x , ) , . . . ,  

x~ tr(x~), tr(xlx2), tr(x~x2), tr(xlx~), tr(x~x~), tr(xl) t r (x2) , . . . ,  tr(x~) tr(x~) }. 

Then, f~(A) will be the *-trace polynomial identities for A contained in IP,~; it 

will be a Bn-submodule; and we may use the quotient V,~/In(A) to define the 

characters ;~Bn (A) and Xs~ (A). 

Asides: (1) In the cases we will study here, the algebra A will satisfy the relation 

tr(a*) = tr(a), for all a C A. One could include the relation tr(u*) = tr(u), for 

all monomials u, in the definition of 1?~. At any rate, the quotient V,~/In(A) will 

be the same in both cases since, if the relations tr(u*) = tr(u) are not already 

built into lPn, they will be included in f~(A). 

(2) The only cocharacters we study in this paper are *-cocharacters with or 

without trace. As an aside, we compare this theory to the more familiar theory 

of ordinary cocharacters. In that case, the space of multilinear polynomials is 

identified with FSn, and this identification is an S~-isomorphism, taking the Sn- 

action on FSn to be left multiplication. In the case of multilinear *-polynomials 

there is a similar B,~-isomorphism with the regular representation FB~. Specially, 

a E B~ may be identified with the *-monomial a(Xl)a(x2).., a(xn). 
For trace polynomials without , ,  there is an identification of pure trace poly- 

nomials with FSn. To make the identification an Sn-isomorphism, one uses the 

conjugation action of S,~ on FSn. If the trace is non-degenerate, one may also 

identify mixed trace polynomials with elements of FS~+I under the conjuga- 

tion action of FSn. In the case of polynomials with • and trace, Loday and 

Procesi have a Bn-isomorphism between F[S2n/Bn] and the space of pure trace 

• -polynomials, modulo the relation of the previous remark 

(3) It follows from (2) that dim Vn = 2'~n! and that  the space of degree n 

pure ,-trace polynomials is (2n)!/2nn! = 1 • 3 . 5 . . .  (2n - 1) under the relation 

/ T  1 - ~ v  At any tr(a*) = tr(a). By Sterling's formula, this is asymptotic to V ~ L  .... 

rate, it is close to 2~n! Using the standard trick of identifying a mixed trace 

polynomial f C 1?~ with the pure trace polynomial t r (x~+lf)  C 1?,,+1, it follows 

that  dim ~'~ = (2(n + 1)!)/2~+1(n + 1)! which, by the above remark, is nearly 
2n+l(n + i)! 
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Irreducible S~-characters are denoted Xx, A E Par(n) and irreducible B~- 

characters are denoted X,, . ,  it E Par(a) ,  ~, E Par(b), a + b = n. Hence we may 

write 

and 

a+b=n #QPar(a) 
~,EPar(b) 

xs (d)= 
AEPar(n) 

aq-b=n ttQPar(a) 
~GPar(b) 

AEPar(n) 

If the B~-character X~,~ is induced down to S~, the resulting character is the 

outer tensor product X~OX~. We mentioned this result to a number of experts 

who were unanimous in telling us that  it was easy but that  they knew of no 

reference. We include a proof in the appendix of this fact and of the rule for 

calculating X~ ,~ 6X~2,~2. The outer tensor product X~OX~ can be calculated by 

the Litt lewood-Richardson rule. cf. [7] chapter 16. If we write the coefficients 

aS XtIQX~ : EAEPar(n) C()~; it, P)X)~, our first lemma is now immediate: 

LEMMA 1 : 

(a) - ~  = E . , ~  c (~ ; . ,  ~).~.,~. 

(b) rhx = E , , ~  c(A; #, ~)rh,,~, for all A E Par(n).  

We close this section with a comparison of the trace and non-trace cocharacters. 

LEMMA 2: 

(a) mx _< rhx, for ali A E Par(n).  

(b) rn~,~ _< rh~,~, for all # E Par(a),  v E Par(b), a + b = n. 

Proo~ The inclusion map V. --* 19. preserves the Bn-action and takes In(A) into 

_T~ (A). Hence, there is a B.~-injection (and afortiori an S.-injection) V,~/I~(A) --* 

 .fin(x). 
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2. Po incar~  series  and cocharac ters  

Our first task in this section is to extend Giambruno's results from [4] in two 

directions. Firstly, that  work studies algebras with involution and we will need 

the corresponding results for algebras with both involution and trace. Secondly, 

[4] compares the Bn-cocharacters with GL(n) x GL(n)-cocharacters. We will 

need to compare it to GL(a) x GL(b)-cocharacters. We will denote the irreducible 

GL(n) character corresponding to the partition A by ~n).  

For the first task, given any GL(n) x GL(n)-module M, let M muir be the space 

of all m E M such that d m =  a l ' "  a,~m, where 

d = (diag(al . . . . .  am) ,d i ag (a l , . . .  , a , 0 )  E GL(n) × GL(n). 

The group Bn has an embedding into GL(n) x GL(n) -_- GL(U) x GL(V) which 

makes the following true. 

THEOREM (Giambruno): Let M C_ (U@V) ®~ be a GL(U) xGL(V)-module  with 
character v" a .(n) ~(n) Mmul t z_dt, l+l~l=~ ~ , ~  @ . Then has Bn-character 

El#l+lvl_- n a~,.X~,.. 

COROLLARY 3: Let M be any finite-dimensional, polynomial GL(U) x GL(V)- 
a _(n) ~(~). M m u l  t module with character )'-~[,]+[vl=n ~,v~p @ Then is a B~-module 

with character 7:d,l+lvl= ~ a~,~X,,~. 

Proof: M is a homomorphic image of a direct sum of copies of (U ® V) ®n. 

We remark for future reference that the generic diagonal matrix 

(d iag( t l , . . . , t~ ) ,  diag(ul . . . .  , u . ) )  e GL(n) x GL(n) has trace )--~1,1+1~1=~ a,,~ 

S , ( t l , . . . ,  tn )S~(ul , . . . ,  un) on M, where S~ and S, are Schur functions. 

Now, fix an algebra A with a trace and an involution. For a, b > 0 let U-(a, b) be 

the generic algebra (with trace and involution) for A generated by a symmetric 

elements sl, s2 , . . . ,  sa and b skew symmetric elements kl, k2 , . . . ,  kb. Note that  

each U(a, b) is an algebra with trace and involution; each U(a, b) has a grading by 

total degree, U(a, b) = ~-~n~=O (~ Un(a, b); each O~(a, b) is a module for GL(a) × 

GL(b) in a natural fashion; and each U(a, b) has an (a + b)-fold grading which 

defines a Poincar6 series fa ,b( t l , . . . ,  tl, u l , . . . ,  Ub), symmetric in the t's and in 

the u's. 

For each n, U~(n,n) has multitinear part equal to Vn/I,~(A), defined in sec- 

tion 1. It follows from Corollary 3 that  (fn(n,n) has GL(n) x GL(n)-character 

rh -(~) ® qz ('~). Our next lemma generalizes this fact. 
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LEMMA 4: For any a, b, 

O O  

f a , b ( t l , . . . , t a , U l , . . . , U b )  = E E r r tu , vSu ( t l , . . . , t a )Sv (Ul , . . . ,Ub) .  
,=o  Iul+M=n 

Proof'. If  A _> a and B _> b there is a mult idegree preserving injection [7(a, b) --* 

U(A, B).  I t  follows tha t  ]a,b = ]A,B] ta+l  . . . . .  tA = 0 " Hence, if U(A, B)  has 

~tb+l  = ' ' "  ~- U B ---- 0 

Poincar~ series ] n , ,  = E,~_-0 Ebul+l~l=~ C , , , S , ( t l , . . . ,  t A ) S , ( u l , . . . ,  uB),  then  

0 ( a ,  b) has Poincar~ series 

fa,b = E ~ = o E I , I + I , I = n C , , ~ S , ( t l , . . . , t a ) S ~ ( u l , . . . , U b ) ,  

with the usual  convention t ha t  S t ~ ( t l , . . .  , t a ) S , ( u l , . . . ,  ub) = 0 if ht(#)  > a or 

ht(v)  > b. 

In the special  case of a = b = n, it follows f rom the previous r emark  t ha t  

C , , ,  = ~ , , ~  for [#[ + [v[ = n. In this case, of course, ht(#) ,  ht(u)  <_ n and the  

l e m m a  now follows. 

The  same a rguments  hold equally well if we consider algebras wi th  • only. 

Let  U(a, b) be the generic a lgebra for A, as an algebra wi th  involution, on a 

symmet r i c  genera tors  and b skew symmet r i c  generators.  If  U(a, b) has Poincar~ 

series fa,b(Q,.  . ., ta, Ul, . . ., Ub), then  as above 

L E M M A  5: For any a, b, 

fa'b(tl'''''ta'Ul'''''Ub)=~--~ E mu'vSu(tl'""ta)Su(Ul'""Ub)" 
~=o I,l+M=n 

As a consequence of L e m m a  5 we get a polynomial  bound for the rn~,. if we 

restr ict  p, u to a strip.  

THEOREM 6: Let  A be an algebra with involution which sat is fes  some *-identity 

and with B~-cocharacter XB~ (A) = ~-~1~1+1~1= ~ m~.,X~.~. For a fixed k, let 

f ( n )  = E { m , , ~ l h t ( p ) , h t ( u )  ~_ k, IP[ + ]u] = n}.  

Then f ( n )  is bounded by a polynomial  in n. 

Proof." Let U = U(k,  k). By  the preceding l emma  U has Poincar~ series 

~ n ~ = O ~ m ~ , v S ~ ( t ) S v ( u )  where the second s u m m a t i o n  is over [p] 4-]t,] = n, 



56 A. BERELE, A. GIAMBRUNO AND A. REGEV Isr. J. Math. 

ht(#) <<_ k, ht(u) <_ k. Now decompose U by total  degree U = ~ U ~  and 

let g(n) -- dim U~. Hence, 

g(n )=  El, l+l , l=nm,,~S,~(1, .  . ,1)S~(1,1,. , 1 ) = ~  m d(k)d (k) 
• . .  Z__ , l~ l+ l~ l=  n ~L,~ ~ , , 

where by A(k) Z(k) ~ , ~ .  we mean the degrees of the GL(k ) -modu les  on p and u. Since 

these degrees are at  least one for ht(#) ,  ht(u) <_ k, g(n) >_ f(n) .  

By Amitsur ' s  Theorem ([1], see also [6]), since U satisfies a *-identity it must  

also satisfy an ordinary polynomial  identity• Hence, by Berele's Theorem ([2]) U 

has finite G K  dimension. But,  g(n) is a growth function for U, so g(n) is bounded  

by a polynomial  in n and so f (n)  must also be bounded by a polynomial  in n. 

COROLLARY 7: Let A = p x p matrices with either symplectic or transpose 

involution. Then f (n)  = ~-:~l~l+l~l=n m,,~ is polynomially bounded. 

Proof" By [5] there are constants e~ and g2 such tha t  m,,~ = 0 unless ht(#) <_ ~1 
and ht(u) <_ e2. 

We will show in the next  section tha t  rh.,~ = 0 unless ht(#) <_ a and ht(u) <_ b, 

where a + b = p2. Since ¢1 + g2 also equals p2 it follows tha t  (a, b) = (fl ,  f2). In 

the or thogonal  case (gl, f2) = (~P(P + 1), ½p(p - 1)) and in the symplect ic  case 

p = 2N and (e l ,  e2) ----- (2N '2 - N, 2N 2 + N).  

3. F a c t s  a b o u t  m u l t i p l i c i t i e s  

For the rest  of this paper  we will specialize to the case of A = p × p matr ices with 

either symplect ic  or t ranspose involution. We will continue to use the nota t ion  

m~, ~ x ,  m~, ,  and rh~,. to denote  the multiplicities of the irreducible components  

in these par t icular  A's. For the reader 's  convenience we record some facts from 

[3]: 

THEOREM 8: 

(a) (=  Theorem 11.2 of [3]) / i ra  = (A1,A2,. . . ,Ap2) with Ap2 > 2, then m~ = 

?TtX. 

(b) (=  Lemma  11.1 of [3]) I f n  = (1 p~) and A = (A1,A2,. . . ,Ap2), let A + ,~ 

denote (A1 + 1, .• . ,Ap2 + 1). Then rh~ = ~ + ~  

(c) (follows from Theorems 5.3 and 9.6 of [3]) Ifht(A) > p2, then ~hx = O. 

As an immedia te  consequence we get 
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THEOREM 9: Let  # = (#1 , . . . ,  #a), u = ( Y l , . . . ,  Yb) be such that  #a, Vb ~ 2 and 

a + b = p2. Then m~,~ = rh,,~. 

Proof: By the Littlewood-Richardson rule, there is a partition A = (A , , . . . ,  Ap2) 

with Av~ _> 2 and c(A; p, u) ~ 0. By Theorem 8(a) rh~ and rn~ are equal. Now 

apply Lemma 1: 

0 = ~  - m~ 

: Z - c( 

= Z c(A, a , / 3 ) ( ~ , ,  - ~n~,,). 

But, by Lemma 2(b), rh~,~ - m~,~ is always non-negative, and the Litt lewood- 

Richardson coefficients c(A, a,/3) are always non-negative. Hence c(A; #, v) ¢ 0 

implies that  rha,, = m~,~. 

Our next goal is to get an analogue of 8(b) and 8(c) for ~ , . .  

LEMMA 10: 

(a) /if ht(#)  + ht(u) > p2 then (n , , ,  = O. 

(b) There exists unique a + b = p2 such that  ~h(lo,lb ) = 1. For all other 

c + d = p 2 ,  rh(lc,ld ) = 0 .  

Proof: (a) In this case c(A;, #, u) ~ 0 for some A with ht(A) > p2. So, if rh~,~ ~ 0 

then rh~ ~ 0 by Lemma 2(b) contradicting Theorem 8(c). 

(b) First, fft(,~2 ) = 1 as a special case of Theorem 8(b). Hence 1 = 

~ , , , c ( l P ~ ; p , u ) ~ , , ~ .  But c(lP2;g,u) ~ 0 only i f p  = 1 ~ and u = 1 b for some 

a + b = p2, in which case c(lV*; #, u) = 1. The lemma follows. 

More is true: The polynomial corresponding to X(1,~) and hence to X(,~,lb) is 

a pure trace polynomial. So it is central. In particular it is not a zero divisor, 

since the ring of generic matrices with trace is prime. Translating to characters 

gives the following lemma: 

LEMMA 11: 

(a) I f h t ( # )  > a or ht(u) > b then (n , , ,  = O. 

(b) Let  ht(#)  <_ a, ht(u) <_ b and denote ( # 1 + 1 , . . . , # ~ + 1 ) ,  ( u l + l , . . . , u b + l )  

as # + (1 ~) and u + (lb), respectively. Then rh,+lo,~+lb >_ rh~,~. 

Proof: (a) Let f ( x l , . . . ,  xp2) E Vv~ be a non-identity, central polynomial for A 

which generates a Bp~-submodule with character X(lO,,~); and let g(x l  . . . .  , xn) E 
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V, be a non-identity which generates a Bp2-submodule with character ~ , . .  Then 

f (xl , . . . ,Xp2)g(Xp2+a,. . . ,  xp2+,) is a non-identity for A and is contained in a 

Bn+p2-submodule of Xl-,ab~X~,.. Hence, rh~,Z ~t 0 for some X~,~ occurring in 

this product. By Theorem A.1 from the appendix, XlO,I~X~,~ is a sum of terms 

of the form X~,~ where a occurs in X(~-)~X~ and /3 occurs in X(I~)QX.. By 

Littlewood-Richardson, ht(a) _> max{a, ht(#)} and ht(/3) > max{b, ht(u)}. So, 

if ht(#) > a or ht(u) > b, ht(a) + ht(~) would always be greater than a + b = p~. 

But, this is impossible by Lemma 10(a). 

(b) Let f ~ U(a, b) correspond to the GL(a) × GL(b)-character ~(lo) ® ~o(1~ ). 

Multiplication by f gives a GL(a) × GL(b) injection from 0(a,  b) to itself and the 

image of 0n(a, b) has character (~o(lo) ® ~o(1~)) times the character of Un(a, b). 

The lemma now follows from the Littlewood-Richardson rule. 

THEOREM 12: For all p, u, ? ' ~ + i .  v + l  b = ?'Ft~,v. 

Proof: Given tt, u, choose any A with c(A; #, u) ~ 0. Then rh~ = rh~+(l~ ) 

by Theorem 8(b). Hence, by aemma l(b), rh~ = ~-~,zc(A + (lP2);a, ~ ) ~ , ~ .  

But, c(A + (lP2);a,/3) ¢ 0 only if ht(a) + ht(13) > p2 and rh~,~ ~ 0 only if 

ht(a) < a, ht(~) <_ b = p2 _ a. Hence, we may restrict the sum to those a,13 

with ht(a) = a and ht(~) = b. So, we may replace a by a + ( 1  ") and /3 by 

/3 + (lb). So 

p2 
rhA = ,---,~-'~'a,~ C(A + (i); a + ( l a ) ,  ~ + ( lb ) )~c ,+(1 , ) ,~+( lb ) .  

It is an exercise in the Littlewood-Richardson rule to prove that c(A + (lP2); 

+ (1°), ~ + (19) = e(~; ~, ~). So, 

~ = ~ c(A; ~, Z)(n~+(~o),~+(,~). 

On the other hand, by Lemma 1 (b) again, 

The Theorem now follows from Lemma l l (b) .  
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LEMMA 13: I f l#  j + I~1 = n, then ~ . ,~  <_ f (n ) ,  for some polynomial f depending 

o n  A.  

Proof  Let p' = # + (2 ~) = (Pl + 2, #2 + 2 , . . . ,  #~ + 2) and # = L, + (2 b) = 

(~1 + 2 , . . . ,  ~b + 2). By Theorem 12, rh, , .  = rh,,,~,, and by Theorem 9, rh#, , ,  = 

m#, , , .  Finally, by Corollary 7, m , , . ,  is polynomially bounded, say by g(n). 

Thus rh,,~ _< g([#'l + [#[) = g(n + 2p 2) and the lemma follows. 

LEMMA 14: Let h t (p ) , h t ( , )  be bounded by constants a and b. Then the 

Littlewood-Richardson coefficients c(A;#,~) are bounded by a polynomial 

in I,I + I.I. 

Proo~ Write # = (P l , . . . , #~) .  Then (X(, , )~" '6 ,~( ,~) , )@> ~ 0 and so it 

suffices to prove that  the multiplicities in X( ,~)Q'"  ~)X(,~)&X~ are polynomial 

in I,I + I'l = 

We may assume by induction that  X(,~)Q" "~X(,~)QX, = ~a(A)Xx where 

a(A) _ (n - #1) k for some k and where A has height bounded by ht(A) <_ a + 

b -  1. Let q = X ( , 1 ) Q ' " & X ( , o ) Q X ,  = ~a(A)(X(,1)6X~) • By Young's rule 

X(m)~X~ = ~ X ,  where I,l[ = n,A C_ r/ and where ~/A is a (skew) horizontal 

strip of size #1. Thus 

q = Z b(,)x:, 

and 
b(7/) = E{a(A)[A c_ ~/, ~/A horizontal} 

< (n - #I)k#{A[A C_ 7, ~//A horizontal}. 

For a given ~/ the cardinality of this set is < rra+b-l(~ - ~+1 + 1) < n a+b-1 .  

Thus, b01 ) < (n - # l ) k n  a+b-1 ~ n k+a+b-1. 

Before proceeding with the proof, we fix a few notations: 

At(n) = {A e Par(n)lht(A ) < g}, d~,. = deg)/u,. and d~ = degxx. 

LEMMA 15: Let l~ E Ael(nl) and u E A~2(n2 ) be such that #~i <-- C for some 

constant C. Then c(A;/z,u) :~ 0 on l y i fA  E Ael+t2(na +n2)  and Ael+t2 _< C. 

Proof'. Follows from the Littlewood-Richardson rule. 
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LEMMA 16: Let 

q =  E f i . , . d . , . .  
M+M=~ 

.~_<1 

Then there are constants c and g such that q < c . ng(a + b - 1) ~. 

Proo~ Since Xg,. restricts to X .~ X. ,  

d . , .  = Eaeha+b(n)  c ( t ; # , . ) d a  _< n d E da, 
A6A~+b(n) 

Aa+b~l 

by Lemma 15. But f i . , .  < n ~ by Lemma 13, so 

q<-n~+d E d~ < c . n g ( a + b - 1 )  ~ 
AEh~+b(n) 

Aa+b<l 

by [11], proof of Theorem 1. 

THEOREM: Let A be p × p matrices with involution. Then the trace 

• -cocharacters t~(A) and the *-cocharacter c~(A) are asymptotically equal 

Proof'. tn(A) = }-~A.l+l.l=~fi. , .d., .  and c,~(A) = ~ [ . l+ l . l==rng , . d . , . ,  hence 

t ~ ( A )  - cn(A) = E . . , + , . p = ~ ( f i . , -  - m.,.)d.,.. T h e  difference fit . , .  - rng,. is 

zero unless #a < 2 or ub < 2 by Theorem 9. Hence 

<_ F_. + f i . , .e . , . .  
..<_1 .b<l 

I.l+l-I=n I.l+l"l=n 

By Corollary 7, f ig , .  is polynomially bounded and so tn (A)  - c~(A) 

polynomial times (a + b - 1) n by Lemma 16. 

behavior p2= = (a + b) =, c .  ~ t~. 

< a 

Since tn(A) has exponential 

Appendix:  Two theorems  on Bn-characters 

In this appendix we prove two theorems on B~-characters which seem to be well 

known but  which we have not been able to find in the literature. As in the 

rest of this paper  we denote irreducible B~-characters by Xg,., I#l + [ul = n and 

irreducible Sn-characters by X~, IAI = n. Also we use c(A; #, u) to denote the 

Lit t lewood-Richardson coefficients X. ® X. = ~ x  c(A; #, u)X~. Here, now, are 

our two theorems: 
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THEOREM A. I :  X,,,~,@)/,~,.~ = ~-~,x~ e(A~; #1, P2) • c(A~; v~, u2))~,,x~. Or, 

more succinctly, X,~,~ @X~2,~ = X~,~@~. 

THEOREM A.2: Let  lit( + Iv[ = n. Then X~,, J. S~ = X~@X~- 

Theorem A.2 follows easily from Theorem A.I: X, , ,  = X~,(0)@X(0),,, where 

(0) denotes the trivial part i t ion.  And X,,(0) restricts to X~ and X(o),, restricts to 

X,. So, the rest of the appendix will be devoted to  the proof  of Theorem A.1. 

We now adopt  the notat ions of the appendix of [5]. In part icular,  f~ = 

-t ( l + g ) ,  f2 = ½ ( 1 -  g) and Jp~ ~ = (A ,.~ S n ) [ ( T t ' ( f ~ ) ® T m ~ ( f 2 ) ) ® ( e ~  ®e,~)], 
2 , z 

i = 1,2, corresponds to X~,,,,, where t i  = [#i[,mi = [v~(. Hence X,~, , I@X,~, , :  is 

the A ~ S~-character  of the A ,.~ Sn left ideal 

Let  

d = (A  ~ Sn)[(A "~ S~,)e, , , ,~ ® (A ~ S~)e,~, ,~]  

= (A  ~ Sn)((A ~ S~,) ® (A ~ Sn~))(e,~,.,  ® e ,~ ,~)  

- - (A  ~ S n ) ( ( T  ~ ( f l )  ® T T M  (f2) ® T e~ (f~) ® T m~ (f2)) 

52 = (A ~ S n ) ( ( T  ~1+~2 (f~) ® T m~+m~ (f2)) @ (ea~ ® et~ 2 ® eu~ @ e~,~)).. 

Clearly, the A ~ S~ character  tha t  corresponds to J2 is Xu,,u~@X,~,~,2. 

We next  show tha t  there is an algebra automorphism ¢ : A ~ S~ --* A ~ S~ 

with ¢(J1)  = J2. This will imply that  J1 -~ J2 as left A ~ S~ modules which 

will prove the theorem. 

Assume W.L.O.G.  tha t  ~2 ~ ml .  
Let  0 • S~ be given by 0 = 

I 1,...,£i, ~1+1,-..,~I+g2, £i+~2+I,...,~i+£2+mi, ~l+~2+rnl+l,...,n ) 
1,.. . ,~1, ~ l + ~ Z l + l , . . . , ~ l  +ml-}-~2, ~1 + l , . . . , ~ l - { - rn l ,  ~ l + ~ . 2 + m l - k l , . . . , n  

Let Se~ x Sml × S~2 x Sm2 C_ Sn be the Young subgroup Sel = S { 1 , . . . ,  el}, S ,~  = 

S{~1+ 1 , . . . ,  ~1+ml} ,  etc. For ~1 E Sel × Sm~ × S~ 2 × S,~ 2 write 7 /=  (~rl, ~r2, ~r2, ~r4) 

and define ~r~ and r~ via: ~r~ e Sm~ = S{~1 + g2 + 1 , . . . , g l  + g2 + m},rr~(i) = 

~r2(i - e2) + g2 and ~r~ • St2 = S{gl + 1 , . . . , ~1  + ~2},~r~(j) = ~r3(j + m l )  - 

ml .  It  is easy to check tha t  0-1~]0 = 0-1(Ir1,~2,Trs, Tr4)0 = (~rl,r~, r~., r4),  so 
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I t  also follows easily tha t  

(T ~ ( f l )  ® T m~ (f2) ® T ~2 ( f l )  ® T m" (f2)) °-~ = T ~'+~2 ( f l )  ® T ~ + m 2  (f2), 

where (al  ® - . .  ® am) °-1 is defined to be ao(1) ® . . .  ® ao(m). 

Finally, the desired au tomorph i sm ¢ is given by ¢(_a ® a)  = a °-1 ® O-laO. 
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